Velotzidade

Dae Wikipedia, s'entziclopedia lìbera.
Jump to navigation Jump to search

Flag of Sardinia, Italy.svg
Articulu in LSC
Flag of Sardinia, Italy.svg

Bill Brack Formula Atlantic EIS 1975.jpg

Sa velotzidade de un'ogetu est su tassu de variatzione de sa positzione sua respetu a unu cuadru de riferimentu e est una funtzione de su tempus. Sa velotzidade est ecuivalente a una dillindada de sa lestresa e diretzione sua de su movimentu (a esèmpiu 60 km/h cara a nord). Sa velotzidade est unu cuntzetu importante in sa cinematica, su ramu de sa mecànica clàssica chi descriet su movimentu de sos corpos.

Sa velotzidade est una cantidade de vetore fìsicu; siat sa grandesa chi sa diretzione sunt netzessàrias pro lu definire. Su balore assolutu iscalare (grandesa) de sa velotzidade est mutidu "lestresa", essende un' unidade coerente derivada sa cale cantidade est mesurada in su SI (sistema mètricu) comente a metros a su segundu (m / s) o comente a unidade base SI de (m⋅ s-1). A esèmpiu, "5 metros a su segundu" est un'iscalare, mentras "5 metros a su segundu EST" est unu vetore. Si b'at una mudada de lestresa, diretzione o ambos, tando s'ogetu tenet una velotzidade variàbile e si narat chi siat subinde un' atzelerada.

Velotzidade costante vs aceleratzione[modìfica | modìfica su còdighe de orìgine]

Pro tènnere una velotzidade costante, un'ogetu depet tènnere una lestresa costante in una diretzione costante. Sa diretzione costante vìnculat s'ogetu a su movimentu in unu percursu deretu, tando una velotzidade costante signìficat movimentu in lìnia reta a una lestresa costante.

A esèmpiu, una màchina chi si movet in manera costante a 20 chilòmetros a s'ora in unu percursu tzirculare tenet una lestresa costante, ma non tenet una velotzidade costante ca sa diretzione sua càmbiat. Tando, sa màchina est cunsiderada in fase de atzelerada.

Distintzione intre velotzidade e lestresa[modìfica | modìfica su còdighe de orìgine]

Cantidades tzinematicas de una partighedda clàssica: massa m, positzione r, velotzidade v, atzelerada a.

Sa lestresa descriet solu cantu lestru un'ogetu s'est movende, mentras sa velotzidade dat siat sa lestresa sa diretzione cun sos cales si moet s'ogetu.[1] Si si narat chi una màchina biàgiat a 60 km/h, sa lestresa sua est istada ispetzificada. Nointames, si si narat chi sa màchina si movet a 60 km/h cara a nord, sa velotzidade sua est istada oras ispetzificada.

Sa manna diferèntzia podet èssere notada cando cunsideramus su movimentu a fùrriu a unu chircu. Cando carchi cosa si movet in unu percursu tzirculare (a lestresa costante, bide subra) e torrat a su puntu suo de partèntzia, sa velotzidade mèdia sua est zero ma sa lestresa mèdia sua benit agatada dividinde sa tzircunferèntzia de su chircu pro su tempus impreadu pro si mòere a fùrriu a su chircu . Custu ca sa velotzidade mèdia benit contada cunsiderende solu su mudamentu tra sos puntos initziale e finale mentras sa lestresa mèdia cunsìderat solu sa distàntzia totale cursada.

Ecuatzione de su motu[modìfica | modìfica su còdighe de orìgine]

Velotzidade mèdia[modìfica | modìfica su còdighe de orìgine]

Sa velotzidade est definida comente a sa rajone de sa mudada de positzione respetu a su tempus, chi podet fintzas èssere indicada comente a sa velotzidade istantànea pro pònner énfasi in sa distintzione dae sa velotzidade mèdia. In carchi aplicatzione diat pòdere èssere netzessària sa "velotzidade mèdia" de un'ogetu, balet a nàrrere sa velotzidade costante chi diat frunire su matessi mudamentu risultante comente a una velotzidade variàbile in su matessi discansu de tempus, v(t), pro unu tzertu perìodu de tempus ΔtTemplate:Math. Sa velotzidade mèdia podet èssere contada comente:

Sa velotzidade mèdia est semper inferiora o uguale a sa lestresa mèdia de un'ogetu. Custu podet èssere bidu realizende chi mentras sa distàntzia creschet semper in manera istrinta, su mudamentu podet crèschere o diminuire de mannesa e cambiare diretzione.

In tèrmines de unu gràficu de mudamentu (x vs. t), sa velotzidade istantànea (o, in manera simple, velotzidade) podet èssere pensada comente a sa pendèntzia de sa lìnia tangente a sa curva in calesi chi siat puntu e sa lestresa mèdia comente a pendèntzia de sa lìnia secante intre duos puntos cun coordinadas t pares a sos lìmites de su perìodu de tempus pro sa velotzidade mèdia.

Sa velotzidade mèdia est sa matessi de sa lestresa mediada in su tempus, balet a nàrrere sa sua mèdia ponderada in su tempus, chi podet èssere contada comente a s'integrale temporale de sa lestresa:

ue podimus identificare

e

Velotzidade istantànea[modìfica | modìfica su còdighe de orìgine]

Esèmpiu de unu gràficu velotzidade-tempus e sa relatzione intre velotzidade v in s'asse y, atzelerada a (sas tres lìnias tangentes birdes rapresentant sos balores pro s'atzelerada in diversos puntos longu sa cònchina) e mudamentu s (s'àrea groga in suta de su curva.)

Si cunsideremus v comente a velotzidade e x comente a su vetore de mudamentu (cambiada de positzione), tando podimus espressare sa velotzidade (istantànea) de una partighedda o ogetu, in onzi piessignu momentu t, comente a derivada de sa positzione respetu a su tempus:

Dae custa ecuatzione derivada, su casu unidimensionale faghet bìdere chi s'àrea in suta de una velotzidade respetu a su tempus (gràficu v vs t) est su mudamentu, x. In tèrmines de càrculu, s'integrale de sa funtzione de velotzidade v(t) est sa funtzione de mudamentu x(t). In sa figura, custa currispondet a s'àrea groga in suta de sa curva cun eticheta s (s una notatzione alternativa pro su mudamentu).

Sigomente sa derivada de sa positzione respetu a su tempus dat sa mudada de positzione (in metros) divididu pro sa mudada de tempus (in segundos), sa velotzidade benit mesurada in metros a su segundu (m / s). Cando chi su cuntzetu de velotzidade istantànea potzat, in comintzu, pàrrere malu a intuire, podet èssere pensadu comente a sa velotzidade in cale s'ogetu at a sighire a biagiare si acabaret de atzelerare in cussu momentu.

Raportu cun s'atzelerada[modìfica | modìfica su còdighe de orìgine]

Mancari sa velotzidade siat definida comente a sa rajone de sa mudada de positzione, est s'ispissu comunu incumentzare cun un' espressione pro s'atzelerada de un'ogetu. Comente bistu dae sas tres lìnias tangentes birdes in sa figura, s'atzelerada istantànea de un'ogetu in unu puntu in su tempus est sa pendèntzia de sa lìnia tangente a sa curva de unu gràficu v(t) in cussu puntu. In unas àteras paràulas, s'atzelerada est definida comente a sa derivada de sa lestresa respeto a su tempus:

Dae cue, potimus otènnere un' espressione pro sa velotzidade comente a s'àrea in suta de unu gràficu a(t) de atzelerada respetu a su tempus. Comente a subra, custu benit fatu impreende su cuntzetu de integrale:

Atzelerada costante[modìfica | modìfica su còdighe de orìgine]

S'in casu ispetziale de s'atzelerada costante, sa velotzidade podet èssere istudiada impreende sas ecuatziones de su motu. Cunsiderende a comente a uguale a unu vetore arbitràriu costante, est banale dimustrare chi

cun v comente a sa velotzidade a su tempus t e u comente a sa velotzidade a su tempus t = 0. Cumbinende custa ecuatzione cun s'ecuatzione de su motu x = ut + at2/2, est possìbile currelare su mudamentu e sa velotzidade mèdia comente

.

Est fintzas possìbile derivare un' espressione pro sa velotzidade indipendente dae su tempus, nòdida comente a ecuatzione de Torricelli, comente a sighit:

ue v = |v|Template:Math etz.

Sas ecuatziones de subra sunt bàlidas siat pro sa mecànica newtoniana chi pro sa relatividade ispetziale. Ue sa mecànica newtoniana e sa relatividade ispetziale diferint, est in su modu in cale diversos osservadores descrient sa matessi situatzione. In manera piessigna, in sa mecànica newtoniana, totu sos osservadores cunsertant in su balore de t e sas règulas de mudadura pro sa positzione creant una situatzione in cale totu sos osservadores no-atzelerantes descrient s'atzelerada de un'ogetu cun sos matessi balores. No est beru mancu pro sa relatividade ispetziale. In unas àteras paràulas, podet èssere contada solu sa velotzidade relativa.

Cantidades chi dipendent dae sa velotzidade[modìfica | modìfica su còdighe de orìgine]

S'energia tzinètica de un'ogetu in movimentu dipendet dae sa velotzidade sua e est data dae s'ecuatzione

disconnoschende sa relatividade ispetziale, ue Ek est s'energia tzinètica e m est sa massa. S'energia tzinètica est una grandesa iscalare in cantu dipendet dae su cuadradu de sa lestresa, nointames una cantidade currelada, cantidade de movimentu, est unu vetore e nd'est definidu dae

In sa relatividade ispetziale, su fatore adimensionale de Lorentz aparit in manera fitiana, e est dadu dae

ue γ est su fatore de Lorentz e c est la lestresa de sa lughe.

Sa velotzidade de fua est sa lestresa mìnima in sa cale un'ogetu balìsticu depet fuire dae unu corpus massitzu comente a sa Terra. Rapresentat s'energia tzinètica chi, si agiunta a s'energia potentziale gravitatzionale de s'ogetu, (chi est semper negativa) est uguale a zero. Sa fòrmula generale pro sa velotzidade de fua de un'ogetu a una distàntzia r de su tzentru de unu praneta cun massa M est

ue G est sa costante gravitatzionale e g est s'atzelerada gravitatzionale. Sa velotzidade de fua de sa superfìtzie terrestre est de belle 11 200 m/s e est indipendente dae sa diretzione de s'ogetu. Custu torrat sa "velotzidade de fua" azigu impròpria, ca su tèrmine prus adatu diat èssere "lestresa de fua": cale si siat ogetu chi sègudat una velotzidade de tale mannesa, in manera indipendente de s'atmosfera, at a lassare sa bighinàntzia de su corpus de base fintzas a cando no at a rujare cun carchi cosa in su percursu suo.

Velotzidade relativa[modìfica | modìfica su còdighe de orìgine]

Sa velotzidade relativa est una medida de sa velotzidade intre duos ogetos determinada in unu sìngulu sistema de coordinadas. Sa velotzidade relativa est fundamentale in sa fìsica clàssica e moderna, dae chi medas sistemas in fìsica s'òcupant de su motu relativu de duos o prus partigheddas. In sa mecànica newtoniana, sa velotzidade relativa est indipendente de sa curnisa de riferimentu inertziale seberada. Custu no est prus su casu de sa relatividade ispetziale in cale sas velotzidades dipendent dae su sèberu de su fotogramma de riferimentu.

Si un'ogetu A si moet cun su vetore de velotzidade v e un'ogetu B cun su vetore de velotzidade w, tando sa velotzidade de s'ogetu A respetu a s'ogetu B est definida comente a sa diferèntzia tra sos duos vetores de velotzidade:

A sa matessi manera sa velotzidade relativa de s'ogetu B chi si moet cun sa veloztidade w, relativa a s'ogetu A chi si moet cun sa velotzidade v est:

A su sòlitu benit seberada sa trama inertziale in cale s'ùrtimu de sos duos ogetos mentovados est in pasu.

Velotzidades iscalares[modìfica | modìfica su còdighe de orìgine]

In su casu unidimensionale,[2] sas velotzidade sunt iscalares e s'ecuatzione est:

, si sos duos ogetos si sunt movende in diretziones opostas, o:
, si sos duos ogetos si sunt movende in sa matessi diretzione.

Coordinadas polares[modìfica | modìfica su còdighe de orìgine]

In coordinadas polares, una velotzidade bidimensionale est descrita dae una velotzidade radiale, definida comente a su cumponente de sa velotzidade a largu de, o cara a, s'orìgine (nòdida fintzas comente a velotzidade currigida), e una velotzidade angulare, chi est su tassu de rotatzione a fùrriu a s'orìgine (cun cantidades positivas chi rapresentant sa rotatzione in sensu antioràriu e cantidades negativas chi rapresentant sa rotatzione in sensu oràriu, in unu sistema de coordinadas cara a dresta).

Sas velotzidades radiales e angulares podent èssere derivadas dae sos vetores de velotzidade e mudamentu cartesianos mediante sa decumpositzione de su vetore de velotzidade in cumponentes radiales e trasversales. Sa velotzidade trasversale est su cumponente de sa velotzidade longu unu chircu atzentradu in s'orìgine.

ue

est sa velotzidade transversale
est sa velotzidade radiale.

Sa mannaria de sa velotzidade radiale est suprodutu iscalare de su vetore de velotzidade e su vetore unitàriu in sa diretzione de su mudamentu.

ue

est mudamentu.

Sa mannaria de sa velotzidade trasversale est cussa de su produtu vetoriale de su vetore unitàriu in sa diretzione de su mudamentu e de su vetore de velotzidade. Est fintzas su produtu de sa velotzidade angulare \omega\ e de sa grandesa de su mudamentu.

in manera chi

Su momentu angulare in forma iscalare est sa massa multiplicada pro sa distàntzia a s'orìgine multiplicada pro sa velotzidade trasversale, o in manera ecuivalente, sa massa pro sa distàntzia cuadrada multiplicada pro sa velotzidade angulare. Sa cunventzione de sinnu pro su momentu angulare est sa matessi de cussa pro sa velotzidade angulare.

ue

est sa massa

S'espressione est connota comente a momentu de inèrtzia. Si sas fortzas sunt in sa diretzione radiale petzi cun una dipendèntzia cuadratica inversa, comente a su casu de un'òrbita gravitatzionale, su momentu angulare est costante e sa velotzidade trasversale est inversamente proportzionale a sa distàntzia, sa velotzidade angulare est inversamente proportzionale a sa distàntzia a su cuadradu e sa velotzidade cun sa cale s'àrea benit mundada est costante. Custas relatziones sunt connotas comente a sas leges de Keplero de su motu planetàriu.

Notas[modìfica | modìfica su còdighe de orìgine]

  1. [1] , This is the likely origin of the speed/velocity terminology in vector physics.
  2. Basic principle

Riferimentos[modìfica | modìfica su còdighe de orìgine]

  • Robert Resnick and Jearl Walker, Fundamentals of Physics, Wiley; 7 Sub edition (June 16, 2004). ISBNTemplate:Isbn0-471-23231-9.

Ligamentos esternos[modìfica | modìfica su còdighe de orìgine]